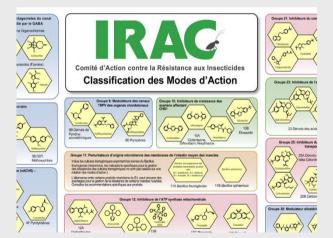


Centre wallon de Recherches agronomiques

Gestion des insectes ravageurs de la pomme de terre, bilan et perspectives dans un contexte de plus en plus changeant

Louis Hautier et Jean-Pierre Jansen Département sciences du vivant Unité Santé des plantes et forêts


Doryphores

Pucerons

0	Numéro	Date limite de mise	Stocks existants: Date ultime de:		
Produits commerciaux	d'autorisation	sur le marché	Commercialisation	Utilisation	
Festival	9752 P/B	04-07-21	04-07-21	04-01-22	
Fortung Gold	10966 P/B	04-07-21	04-07-21	04-01-22	
Fubal Gold	9475 P/B	04-07-21	04-07-21	04-01-22	
Fudan Gold	10967 P/B	04-07-21	04-07-21	04-01-22	
Fungitex 725 WG	10397 P/B	04-07-21	04-07-21	04-01-22	
Fury 100 EW	8476 P/B	29-02-20	31-08-20	31-08-21	
Indomate 725 WG	10980 P/B	04-07-21	04-07-21	04-01-22	
Infdofil M-45	9036 P/B	04-07-21	04-07-21	_04-01-22	
Intercyp 0,8 GR	1333 P/P	31-10-22	30-04-23	30-04-24	
Karis 100 CS	1133 P/P	15-10-22	15-04-23	15-04-24	
Lambada	1174 P/P	31-12-20	30-06-21	31-12-21	
Mancaplus 75 WG	9621 P/B	04-07-21	04-07-21	04-01-22	
Manfil 75 WG	9478 P/B	04-07-21	04-07-21	04-01-22	
Mastana SC	9110 P/B	04-07-21	04-07-21	04-01-22	
Matrag Pro	1200 P/P	31-12-20	30-06-21	31-05-22	
Miprid	1340 P/P	31-12-21	30-06-22	30-06-23	
Minuet	9636 P/B	29-02-20	31-08-20	31-08-21	
Movento	1131 P/B	31-10-22	30-10-24	30-10-25	
Movento 100 SC	1361 P/P	31-10-22	30-10-24	30-10-25	
Movento 100 SC	9797 P/B	31-10-22	30-10-24	30-10-25	
Moximate 725 WG	10279 P/B	04-07-21	04-07-21	04-01-22	
Moximate 725 WP	10277 P/B	04-07-21	04-07-21	04-01-22	
Narita	1083 P/P	31-12-22	30-06-23	30-06-24	
Navia	10705 P/B	15-12-21	04-01-22	_04-01-22	
Nautile	10701 P/B	04-07-21	04-07-21	04-01-22	
Nautile WP	10350 P/B	04-07-21	04-07-21	04-01-22	
Oryego Extre	10016 P/B	04-07-21	04-07-21	_04-01-22	
Palmas	9469 P/B	04-07-21	04-07-21	04-01-22	
Datalat	0207.070	20 00 22	21 12 22	20 10 22	

Changements climatiques

Résistance aux insecticides

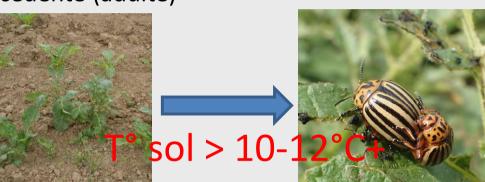
Produits disponibles

I.Doryphores



Historique de *Leptinotarsa* decemlineata Say

- Colorado potato beetle (CPB)
- Coleoptère chrysomélidé phytophage
- Régime alimentaire strict
 - Solanacées
 - Hôte d'origine, Solanum rostratum (montagnes du Colorado)
- Passe sur pommes de terre avec l'arrivée des colons et colonise les Etats-Unis (1860-1880)
- Colonise l'Europe occidentale (1920-1940) via le port de Bordeaux
- Ravageur le plus important en pomme de terre
- Utilisation des premiers insecticides de synthèse



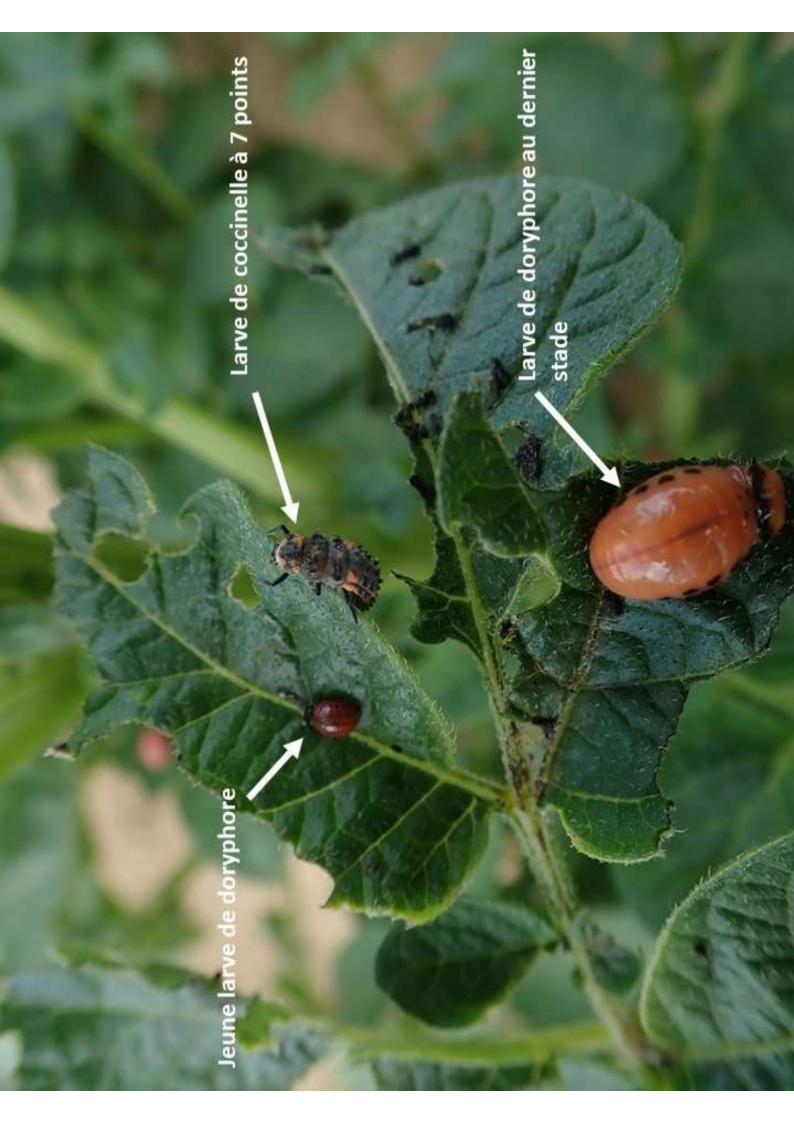
Cycle biologique

A. Sortie du sol champ année précédente (adulte)

B. Colonisation nouveau champ, accouplement

C. Œufs, 4 stades larvaires, nymphose dans le sol

D. Deuxième génération



8-15 jours

A ne pas confondre avec les coccinelles

Source: /	Agridea	dessus	Larve profil		dessus	Nymph profil	e	Adul	te
Ne pas confondre	DORYPHORE	Î	*	8 à 12 mm			10 mm	-	10 mm
	COCCINELLE			5 à 11 mm		9	3 à 9 mm	徹	7 mm

Génération(s)

Développement complet, de l'œuf à l'adulte

420°C degrés/jours en base 10°C

Réchauffement climatique, un degré en plus raccourcit le cycle d'une

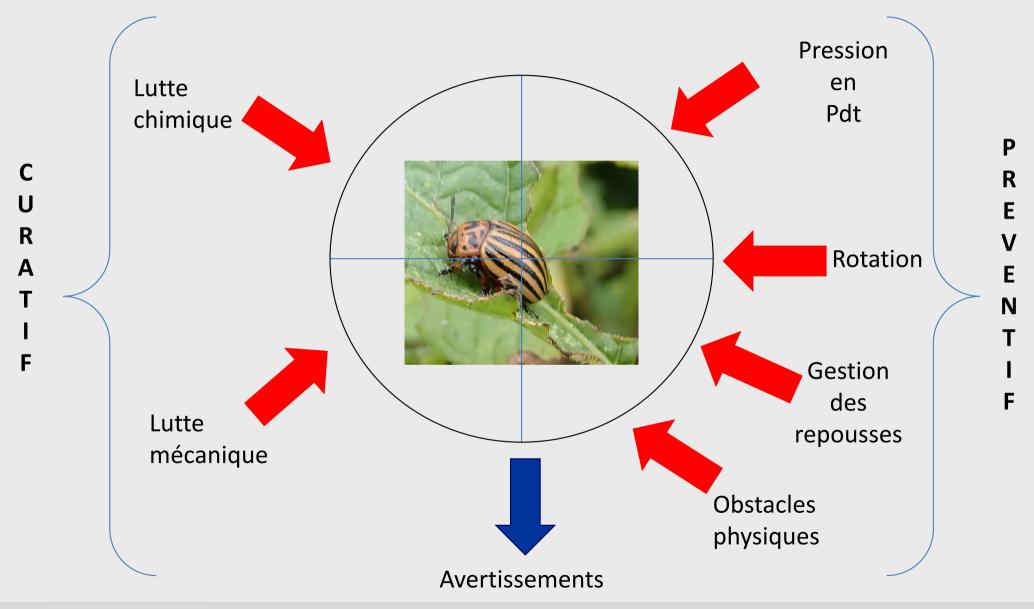
semaine

T° moyenne	Cycle
16°C	70 jours
17°C	60 jours
18°C	52 jours
20°C	42 jours
24°C	30 jours

- Une génération possible par an en Belgique (1980) à régulièrement deux générations de nos jours
- Populations affectées par les sols gorgés d'eau en hiver mais pas par les hivers rigoureux secs

Biologie et dégâts

- Défoliateur
 - Larves mangent +/- 40cm² de feuillage au cours de leur développement
 - Adultes +/- 10cm² par jour
- Adultes peu mobiles
- Première génération peu de dégâts en conditions normales
- Seconde génération très dommageable



Biologie et dégâts

- Seuil(s) de nuisance(s)
 - Au cas par cas
 - Dépend du pourcentage de feuille dont la culture peut se passer pour « faire » son rendement
 - Dépend de la période d'attaque et de la durée de la végétation avant défanage/récolte :
 - Possibilité (ou non) de compenser le feuillage détruit (attaques précoces)
 - Rendement déjà en grande partie « acquis » ou non (attaques tardives)
 - Variétés précoces ou non, croissance déterminée ou non
 - Superficie concernée
 - Attaques très localisées (tâches ou ronds) ou plus généralisées
- Seuils d'intervention allant de 0,5-1% de feuillage détruit à plus de 30%. (1 plante sur 4 est défoliée à 25%)

Lutte intégrée contre le doryphore

Mesures prophylactiques

- Facteurs influençant la contamination d'un nouveau champ
 - Populations au printemps
 - Populations en fin de saison précédente + Survie à l'hiver + Déplacement
 - Distance par rapport aux champs de PDT de l'année dernière avec doryphores
 - Plantes relais pour l'alimentation des adultes en début de saison
 - Repousses de pomme de terre, écarts de triage
 - Autres solanacées (morelles, datura,....)
 - Présence d'obstacles physiques
 - Barrières végétales, végétation haute
 - Fossés et rigoles

Gestion repousses de pomme de terre

- Champ de pommes de terre l'année précédente infesté par des doryphores non gérés
- Repousses = 1^{er} source de nourriture pour les adultes qui émergent au printemps (Solanacées indispensables pour la dispersion)
- Souvent ne sont pas surveillées, ni traitées
- A éliminer le plus rapidement possible

Ennemis naturels et contrôle biologique

Prédateurs et parasites

- Espèces américaines, prédatrices ou parasite des œufs
- Aucune espèce européenne
 - Œufs et larves de doryphores toxiques pour les prédateurs européens (coccinelles, chrysopes, carabes, etc...)

Champignons, bactéries et nématodes

- Peu de produits efficaces
 - Produits à base de Bacillus thuringiensis var tenebrionis (BTT) (toxine origine bactérienne)
 - Souches de *Beauveria bassiana* (champignon entomopathogène)
 - Nématodes : Steinernema feltiae
 - Compliqué à produire et à utiliser, coût/efficacité

=> Potentiel pour le contrôle biologique très limité à l'heure actuelle

Lutte mécanique

Ex Colorado Potato Catcher de Field Workers

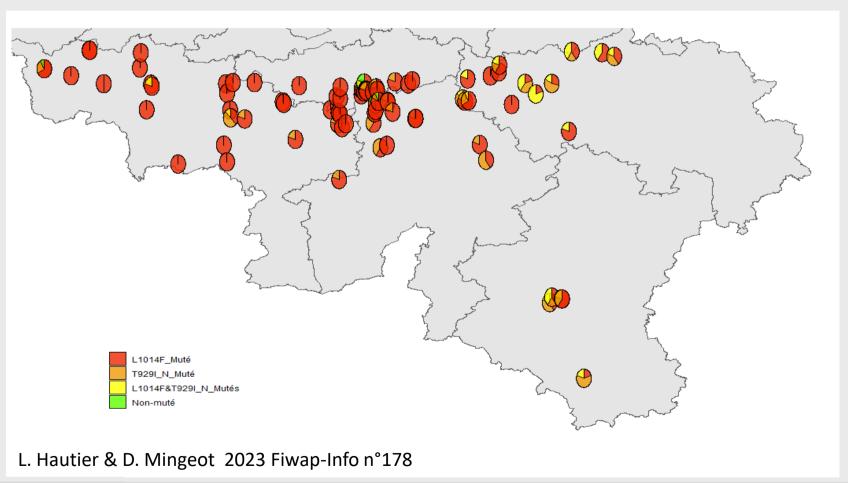
Lutte mécanique

Lutte chimique - insecticides

Groupe	Matière Active	Résistances
UN	azadirachtine	?
28	chlorantraniliprole	3
28	cyantraniliprole	3
3	cypermethrine	oui
3	cypermethrine + piperonyl butoxyde	oui
3	deltamethrine	oui
3	esfenvalerate	oui
3	gamma-cyhalothrine	oui
3	lambda-cyhalothrine	oui
3	pyréhtrines naturelles '+ huile de colza	oui
5	spinosad	,

Efficacité conditionnée des pyréthrinoïdes!

- Dégradés à la lumière
- Eviter t > 25°C
- => Traitement par temps couvert (matin/soir)

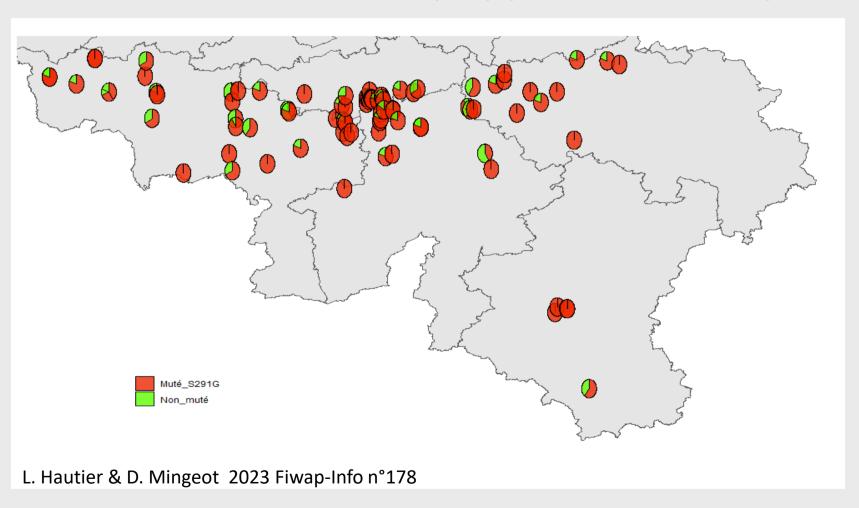

Monitoring résistances doryphores 2022

(89 champs)

Résistance aux pyréthrinoïdes (n=519 individus)

Proportion des spécimens mutés (99%) :

L1014F (80.7%, en rouge), T929I_N (5.0%, en orange), L1014F & T929I_N (13.3% en jaune)



Monitoring résistances doryphores 2022

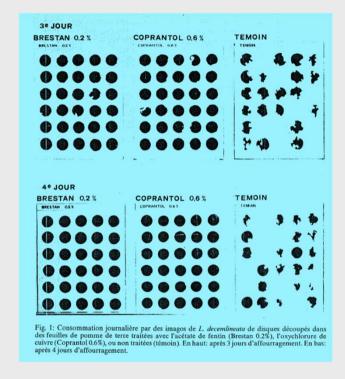
(89 champs)

Résistance aux carbamates et organophosphorés (n=547 individus)

Détection de la mutation S291G (86%), (max 60% de non mutés)

Gestion de la résistance

(1) Importance de l'alternance des groupes et tenir compte des autres traitements!


Famille d'insecticide	Mode d'action	Groupe
Pyréthrines naturelles ou pyréthrinoïdes de synthèse (gamma- cyhalothrine, lambda-cyhalothrine, cyperméthrine, alpha- cyperméthrine, deltaméthrine, esfenvalérate)	SNM : Canal sodium des axones : modulation ou ouverture	3A
Lactones microbiennes ou semi-synthétiques (spinosynes et	SNM: Récepteur nicotinique de l'acétylcholine – ouverture du	5
spinosoïdes)	canal ionique, résultant d'une activation	
Carboxamides (chlorantraniliprole, cyantraniliprole)	SNM : Récepteur de la ryanodine - modulation - activation	28
Extraits végétaux (azadirachtine)	RH: Inhibition de la mue des arthropodes - cible incertaine ou	UN
	inconnue	

- (2) Appliquer la dose agréée (pas de dose réduite) dans des conditions optimales (buses, litrage, heure d'application, température...) pour assurer la meilleure efficacité du traitement et vérifier l'efficacité du traitement !
- (3) Préférer des traitements localisés aux traitements généralisés

Lutte chimique – produits alternatifs?

- Répulsifs, phéromones
- Anti-feedant
 - Produits à base de cuivre ?
 - Effets constatés en labo (Murbach, 1975)
 - Pas de nourriture alternative
 - Dose élevée (10-12 kg Cu) en une seule application
 - Extraits végétaux
- Abrasifs perturbateurs
 - Kaolinite

A ce jour, efficacité très limitée en pratique, effets très variables

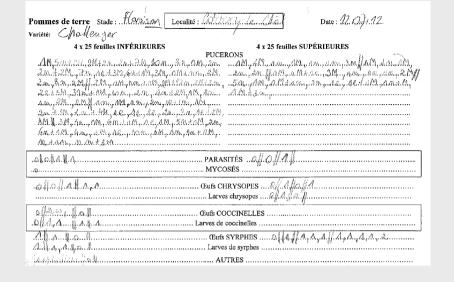
II. PUCERONS

PDT Consommation ou plant, pas le même combat

- Production de pomme de terre de consommation
 - Dégâts directs par prélèvement de sève, impact sur le rendement
 - Seules quelques variétés pouvant être directement impactée par le virus YNTN (nécrose annulaire): Spunta, Nicola,....
- Production de plant
 - lutte contre les pucerons vecteurs de virus, normes de certification
- Gestion des dégâts, seuils, méthodes de lutte complètement différentes

PDT de consommation

- Grosses infestations de pucerons en 1993-94 et 1996
 - Mise en place d'un réseau d'observation et d'un système d'avertissement
 - 30 ans d'expérience, plus de 400 champs suivis (CRA-W, Carah)
 - Synthèse faite en 2015 pour les 20 ans
 - Mise à jour en fonction du contexte actuel
 - Changement climatiques
 - Produits disponibles/résistances



Système d'avertissement

- Observations sur le terrain
 - Juin-juillet
 - Comptage sur 200 feuilles
 - Pucerons et ennemis naturels
 - Estimation du risque et avis
 - Seuil de nuisance fixé à 10 pucerons/feuille
- Modèle établi en 2001
 - Jamais réellement pris en défaut
 - Champs qui sortent de la logique du modèle sont ceux traités contre les doryphores avec certains insecticides

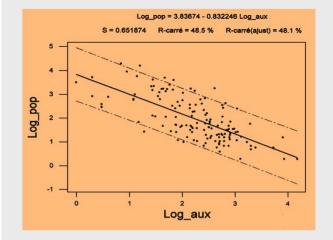
Pucerons rencontrés

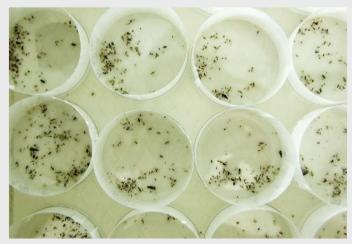
- 3 espèces principales
 - Aphis nasturtii (+ Aphis frangulae) le « petit jaune »
 - Pullulations pouvant être parfois importante
 - Semble plus abondant dans certaines parties du pays (zones calcaires)
 - Temps chaud et sec
 - Macrosiphum euphorbiae (puceron vert et rose de la pomme de terre)
 - Pullulations souvent liées à une fumure azotée excessive
 - Zones de dédoublement de fertilisation
 - Minéralisation importante du sol après un arrêt prolongé
 - Myzus persicae (puceron vert)
 - Discret en général
 - Peut « exploser » après un traitement insecticide
 - Lié à sa résistance aux pyréthrinoïdes ?

Système d'avertissement

- Importance des ennemis naturels
 - Hyménoptères parasites (Aphidius sp.)
 - Début de saison, populations faibles
 - Contrôle direct/ralentissement du développement des populations en place

- Coccinelles, syrphes et chrysopes
- Plus tardifs, en fonction de la densité de pucerons
- Action complémentaire, le plus souvent suffisant pour éviter la nécessité d'un traitement insecticide




Système d'avertissement

- Index « auxiliaire » permet de prévoir l'évolution des populations
 - 2 larves de prédateurs ou 10 pucerons parasités pour 100 pucerons sont suffisant pour maintenir les pucerons en dessous du seuil de 10 pucerons/feuille
 - Traitements insecticide (puceron et/ou doryphores)
 «efface » en tout ou en partie l'action de ces auxiliaires
 - Certains traitements fongicides avaient le même effet (toxicité importante pour Aphidius en début de saison)

Sélectivité des phytos utilisés en pomme de terre vis-à-vis des auxiliaires

- Toxicité pour trois espèces indicatrices
 - Aphidius rhopalosiphi (hyménoptère parasite)
 - Adalia bipunctata (prédateur, coccinelle)
 - Episyrphus balteatus (prédateur, syrphe)
- Listes en fonction de la toxicité et de la présence des auxiliaires
 - 4 périodes
 - Codes couleur

Sélectivité des pesticides vis-à-vis des insectes utiles en pommes de terre - 17.04.2023

Jusqu'au 10 Juin

Peu d'insectes utiles

Fongicides

AMETOCTRADIN + DIMETOMORPHE

AMISULBROM **AZOXYSTROBINE**

BOSCALID + PYRACLOSTROBINE

CUIVRE** (Hydroxide, Oxycholorure et Sulfate)

CYAZOFAMIDE CYMOXANIL

CYMOXANYL + MANDIPROPAMIDE

CYMOXANIL + PROPAMOCARBE

DIFENOCONAZOLE

DIFENOCONAZOLE + MANDIPROPAMIDE

DIMETOMORPHE + FLUAZINAM

DIMETOMORPHE + PYRACLOSTROBINE

DIMETOMORPHE + ZOXAMIDE

FLUAZINAM

FLUOPICOLIDE + PROPAMOCARBE

MANDIPROPAMIDE

OXATHIAPIPROLINE

Légende

Produit sélectif

Produit movennement sélectif

Produit peu sélectif

Produit non sélectif

**Autorisé en Agriculture bio

Du 10 au 30 Juin Colonisation par les hyménoptères

Fongicides

AMETOCTRADIN + DIMETOMORPHE

AMISULBROM AZOXYSTROBINE

BOSCALID + PYRACLOSTROBINE

CUIVRE** (Hydroxide, Oxycholorure et Sulfate) CYAZOFAMIDE

CYMOXANIL

CYMOXANYL + MANDIPROPAMIDE CYMOXANIL + PROPAMOCARBE

DIFENOCONAZOLE

DIFENOCONAZOLE + MANDIPROPAMIDE

DIMETOMORPHE + FLUAZINAM

DIMETOMORPHE + PYRACLOSTROBINE

DIMETOMORPHE + ZOXAMIDE

FLUAZINAM

FLUOPICOLIDE + PROPAMOCARBE MANDIPROPAMIDE

OXATHIAPIPROLINE

Insecticides

CETAMIPRID

AZADIRACHTINE** CHLORANTRANILIPROLE

CYANTRANILIPROLE CYPERMETHRINE

CYPERMETHRINE + PIPERONYL BUTOXIDE

DELTAMETHRINE ESFENVALERATE

FLONICAMIDE HUILE PARAFFINIQUE

LAMBDA - CYHALOTHRINE

LAMBDA - CYHALOTHRINE + PIRIMICARBE

PIRIMICARBE

PYRETHRINES + HUILE DE COLZA**

YRETHRINES + PIPERONYL BUTOXIDE**

SPINOSAD** SPIROTETRAMATE

SULFOXAFLOR TAU-FLUVALINATE

Du 1^{er} au 31 Juillet Colonisation par les syrphes et

Fongicides

AMETOCTRADIN + DIMETOMORPHE

AMISULBROM

AZOXYSTROBINE BOSCALID + PYRACLOSTROBINE

CUIVRE** (Hydroxide, Oxycholorure et Sulfate)

CYAZOFAMIDE

CYMOXANYL + MANDIPROPAMIDE

CYMOXANIL + PROPAMOCARBE

DIFENOCONAZOLE

DIFENOCONAZOLE + MANDIPROPAMIDE

DIMETOMORPHE + FLUAZINAM

DIMETOMORPHE + PYRACLOSTROBINE

DIMETOMORPHE + ZOXAMIDE

FLUAZINAM

FLUOPICOLIDE + PROPAMOCARBE

MANDIPROPAMIDE

OXATHIAPIPROLINE

Insecticides

ACETAMIPRID

AZADIRACHTINE** CHLORANTRANILIPROLE

CYANTRANILIPROLE

DELTAMETHRINE

ESFENVALERATE FLONICAMIDE

LAMBDA -CYHALOTHRINE LAMBDA -CYHALOTHRINE + PIRIMICARBE

PIRIMICARBE

PYRETHRINES + HUILE DE COLZA**

PYRETHRINES + PIPERONYL BUTOXIDE**

SPINOSAD** **SPIROTETRAMATE**

TAU-FLUVALINATE

Après le 1^{er} Aout

Peu d'insectes utiles

Fongicides

AMETOCTRADIN + DIMETOMORPHE

AMISULBROM

AZOXYSTROBINE

BOSCALID + PYRACLOSTROBINE

CUIVRE** (Hydroxide, Oxycholorure et Sulfate)

CYAZOFAMIDE

CYMOXANYL + MANDIPROPAMIDE

CYMOXANIL + PROPAMOCARBE

DIFENOCONAZOLE

DIFENOCONAZOLE + MANDIPROPAMIDE

DIMETOMORPHE + FLUAZINAM

DIMETOMORPHE + PYRACLOSTROBINE

DIMETOMORPHE + ZOXAMIDE

FLUAZINAM

FLUOPICOLIDE + PROPAMOCARBE

MANDIPROPAMIDE

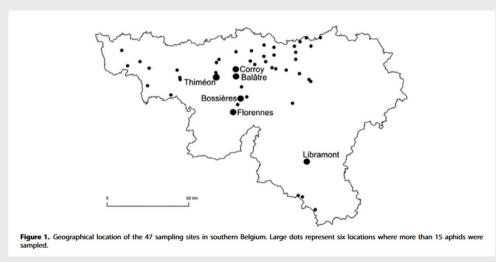
OXATHIAPIPROLINE

Contexte changeant: climat

- Réchauffement climatique
 - Modification des dates
 - Données 2013-2023, ± 10 jours d'avance par rapport à la période 1994-2004
 - Décalage de l'arrivée et du pic de populations de pucerons
 - Parasites et prédateurs également plus précoces
 - Pas plus d'insectes dans les champs ni pendant une période plus longue en culture pour l'instant

Contexte changeant: produits

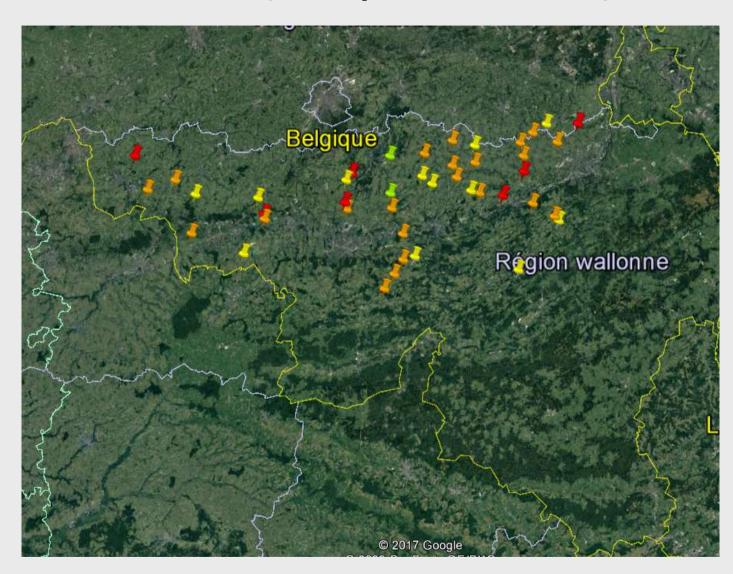
Produits commercious	Numéro	Date limite de mise	Stocks existants: Date ultime de:		
Produits commerciaux	d'autorisation	sur le marché	Commercialisation	Utilisation	
Festival	9752778	04-07-21	04-07-21	04-01-22	
Fortuna Gold	10905T/8	04-07-21	04-07-21	04-01-22	
Fubal Gold	9475 F/B	04-07:21	04-07:21	04-01-22	
Fudan Gold	10907 P/B	04-07-21	04-07-21	04-01-22	
Fungitzx 725-W6	10397778	04-07/21	04-07-21	04-01:22	
Fury 100 EW	8475 F/B	29-02-20	31-08-20	31-08-21	
Indomate 725 W6	10980 F/B	04-07-21	04-07-21	_04-01-22	
Infdof@M.45	9036778	04-07-21	04-07-21	04-91-22	
Intercyp 0 8 6R	1333 P/P	31-10-22	30-04-23	30-04-24	
Karis 100 CS	1133 P/P	15-10-22	15-04-23	15-04-24	
Lomboda	11747/5	31-12:20	30-06:21	31-12:21	
Mancoplus 75 WG	9021F/B	04-07:21	04-07-21	04-01:72	
Montil 75 WG	9478 F/B	04-07-21	04-07-21	04-01-22	
Mostons SC	9110 F/B	04-07-21	04-07-21	04-01-22	
Matros Pro	1200 F/P	31-12:20	30-06-21	34-05:22	
Miprid	1340 P/P	31-12-21	30-06-22	30-06-23	
Minuet	9636 F/B	29-02-20	31-08-20	31-08-21	
Movento	1131 P/B	31-10-22	30-10-24	30-10-25	
Movento 100 SC	1361 P/P	31-10-22	30-10-24	30-10-25	
Movento 100 SC	9797 9/8	31-10-22	30-10-24	30-10-25	
Moximate 725-WG	10279 P/B	04-07:21	04-07:21	04-01:22	
Maximate 726 WP	102777/8	04-07-21	04-07:21	04-01:22	
Norita	1083 P/P	31-12-22	30-06-23	30-06-24	
Navio	10705 P/B	-15-12-21	04-01:22	04-01:22	
Nautile	4070T778	04-07/21	04-07-21	04-01-22	
Noutile WP	10350778	04-07-21	04-07-21	04-01-22	
Orygon Extra	10016 F/8	04-07-21	04-07-21	04-01-22	
Palmos	9467 F/B	04-07-21	04-07-21	04-01-22	
Patriot	9207 P/R	30,08,22	31,12,22	30,10,23	


- Produits disponibles Résistances
 - Macrosiphum euphorbiae
 - Tous les insecticides agréés fonctionnent
 - Petit jaune: peu sensible aux pyréthrinoïdes et au pirimicarbe
 - Métabolisme de l'insecte
 - Préférence pour la face inférieure de la partie basse de la végétation
 - Groupe de pucerons (*Aphis gossypii/frangulae*) connus mondialement pour développer des résistances
 - Myzus persicae
 - Problèmes de résistance aux pyréthrinoïdes et au pirimicarbe
 - Monitoring en 2016-2017 en Région wallonne

Monitoring de la résistance

- 254 M. persicae pucerons échantillonnés entre 2016 et 2018 dans des champs de pommes de terre
- Analyses génétiques pour détecter la présence de mutations connues pouvant conférer une résistance aux insecticides
 - Kdr et s-kdr, résistance aux pyréthrinoïdes
 - MACE, résistance aux carbamates (pirimicarbe)
 - R81T, résistance aux néonicotinoïdes

Pour plus de détails, voir Mingeot, Hautier et Jansen, 2020. Pest Management Science, 77: 482-491


2017: 44 sites (92 pucerons)

sensible

kdr

s-kdr + kdr

s-kdr

Mutations conférant une résistance a une famille d'insecticide (254 pucerons, 2016-2017), synthèse

	Statut	Mutation	n	%
1. Pyréthrinoïdes	Sensible	aucune	6	2,4%
	Résistant	kdr	140	55,1%
		s-kdr	101	39,8%
		kdr + s-kdr	7	2,8%
		total	248	97,6%
2. Carbamates (Pirimicarbe)	Sensible	aucune	162	63,8%
	Résistant	MACE	92	36,2%
3. Neonicotinoïdes	Sensible	aucune	254	100,0%
	Résistant	R81T	0	0,0%

Produits disponibles vs résistance

	Pucceron vert et rose de la PDT	Petit jaune	Puceron vert du pêcher	Classe	Mode d'action
Acetamiprid	ОК	OK	ОК	Neonicotinoide ss	4A
Flupyradifurone	ОК	OK	ОК	Butolinide (neonicotinoide sl)	4D
Sulfoxaflor	OK	OK	ОК	Sulfoximine (neonicotinoide sl)	4C
Flonicamide	OK	OK	ОК	Amide	29
Spirotetramate	ОК	ОК	ОК	Acide carbocylique	23
Pirimicarbe	OK	Χ	X	Carbamate	1A
Cypermethrine	ОК	X	X	Pyrethrinoïde	3
Deltamethrine	ОК	X	X	Pyrethrinoïde	3
Esfenvalerate	OK	Х	X	Pyrethrinoïde	3
Lambda-cyhalothrine	ОК	Χ	X	Pyrethrinoïde	3
Pyrethrines + PBO	ОК	Χ	X	Pyrethrinoïde	3
Tau-fluvalinate	ОК	Х	X	Pyrethrinoïde	3

5 matières actives, 3 modes d'action pour lutter contre les
 3 espèces de pucerons à la fois

Gestion des résistances

- Raisonner les traitements insecticides pour éviter les traitements inutiles et accélérer l'apparition de nouvelles résistances
 - Seuils de nuisance
 - Insectes utiles
- Raisonner par mode d'action, classe chimique et matières actives
 - « Oublier » les noms commerciaux
 - Idéalement 1 mode d'action par culture et par saison au maximum
 - Ne jamais réutiliser le même produit s'il ne marche pas la première fois (sauf rares exceptions)

Gestion des résistances

- Raisonner par culture
 - M. persicae est aussi exposé aux traitements contre les doryphores en pomme de terre
- Raisonner par espèce cible
 - M. persicae n'est présent en pomme de terre que 3-4 semaines par an (juin-juillet)
 - Possibilité d'être exposé à des insecticides en dehors
 - Betteraves sucrières (avril-mai)
 - Légumes (toute l'année)
 - Colza (dégâts en aout octobre mais potentiellement présent toute la saison de culture)
 - **–**
 - Mêmes populations ou pas ?
 - Recherches en génétiques à faire
- Raisonner à l'échelle d'un territoire et de saisons culturales plutôt qu'à l'échelle de la parcelle ?

En guise de Conclusions

- Domaine complexe et contexte changeant
- Réflexe 1 ravageur dans une culture ⇔1 traitement dépassé
- Nécessité de prendre les meilleures décisions à court, moyen et long terme
 - Par ravageur
 - Par culture
 - Pour une rotation
 - Pour un territoire donné
- Gamme d'insecticides efficaces et sélectifs disponible à la fois contre le doryphore et les pucerons
 - Nombre limité de modes d'actions différents (3-4 max)
 - Nécessité de raisonner plus que jamais pour éviter l'apparition de résistances
 - Autres méthodes de lutte à envisager, l'insecticide étant là pour corriger ce qui n'a pas fonctionné

Merci pour votre attention

